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1. INTRODUCTION 

The prediction of the circular dichroism of the fundamental vibrational transitions of a chiral molecule 

at the harmonic level of approximation requires the implementation of (Stephens 1985, 1987) 

Ri = Im[<0|pel|l>r<l|p     |0>i] , (la) 

<0|(Pei)Bll>i = 

(       V/2 

2©: 
V.        J 

E p£ß SXa.i . (lb) 
X,a 

<0 |(uraag)ß | l>i = - (2*\)V2 £ M^p Sj^i . (lc) 
X,a 

R| is the rotational strength of the fundamental excitation of the ith normal mode of energy fcfflj. The 

corresponding normal coordinates, Qj, are related to Cartesian nuclear displacement coordinates X^ 

(A, = nucleus, a = x,y,z) via 

XXa = E   ViQi- (2) 
i 

The electric and magnetic dipole transition moments, whose scalar products determine rotational strengths, 

are in turn a function, respective, of the tensors, P^p and M^.  The tensors P^o, which determine 

electric dipole transition moments, are the well-known atomic polar tensors (APTs) (Stephens et al. 1990). 

X 
The tensors M^, which determine magnetic dipole transition moments, are the atomic axial tensors 

(AATs), more recently introduced into the literature (Stephens 1985, 1987; Stephens et al. 1990). 

Since the development of equation (lc) for vibrational magnetic dipole transition moments, a 

substantial number of predictions of vibrational circular dichroism (VCD) spectra utilizing equation (1) 

and ab initio SCF or post-SCF calculations of APTs and AATs have been published. For some molecules, 



predictions have been compared to experimental data (see, for example, Lowe, Stephens, and Segal 1986; 

Jalkanen et al. 1987, 1988, 1989, 1990; Kawiecki et al. 1988, 1991; Bursi, Devlin, and Stephens 1990; 

Lowe and Alper 1988; Dothe, Lowe, and Alper 1988; Amos, Handy, and Palmieri 1990; Malon et 

al. 1992; Fablioni et al. 1993). Unfortunately, these predictions have used vibrational force fields of 

widely differing provenance, reliability, and accuracy. The accuracy of predicted VCD intensities has 

therefore been limited not only by errors in the APTs and AATs but also by errors in vibrational 

frequencies and normal coordinates. Unambiguous attribution of the origins of differences between 

predicted and observed VCD spectra has thus been impossible. 

Accurate harmonic vibrational force fields, frequencies, and normal coordinates require ab initio 

calculations at the post-SCF level. Of the various approaches to the inclusion of correlation in the 

calculation of harmonic force fields, M0ller-Plesset second-order perturbation theory (MP2) has been the 

most widely used. When large basis sets are used, MP2 force fields typically yield harmonic frequencies 

in error by only l%-3% (Simandiras et al. 1988). Anharmonicity corrections to vibrational frequencies 

are then comparable to or larger than errors in harmonic frequencies. Calculations of vibrational spectra 

using such force fields should not be significantly limited in accuracy by residual errors in harmonic 

frequencies. Of course, large basis set MP2 calculations of harmonic force fields are computationally 

demanding. However, recent advantages in the computation of MP2 second derivatives via analytical 

derivative methods (Stanton, Gauss, and Bartlett 1992; Gauss, Stanton, and Bartlett 1992; Trucks et 

al. unpublished)* have greatly enlarged the range of molecules for which such calculations are feasible. 

As a result, large basis set MP2 calculations for chiral molecules whose VCD spectra have been measured 

experimentally are now practicable. We here report calculations of VCD spectra which take advantage 

of this development. The following molecules have been studied: 

°- CH3 _\f     °Z\    <£\     Z2S 
1 

(*= 13C) 

MP2 force fields have been calculated using a [5s4p2d/3s2p] (TZ/2P [Stephens et al. 1990]) basis set. 

APTs and AATs have also been calculated using this basis set. The results are compared to existing VCD 

spectra and to rotational strengths obtained thence.   For 1-3 the sensitivity of the results to further 

* See GAUSSIAN 92 user's manual. 



enlargement of the basis set to the [8s6p3d/6s3p] (VD/3P [Stephens et al. 1990]) level has also been 

examined. 

The VD/3P calculations for 1 were reported in a prior communication (Stephens et al. 1993). 

2. METHODS 

Ab initio calculations have been carried out using Cray-YMP versions of CADPAC 4.0 and 5.0 and 

Cray-YMP and Cray-2 versions of GAUSSIAN 92. MP2 Hessians and APTs were calculated at the TZ/2P 

basis set level for oxirane (5) and cyclopropane (6) using 'conventional' methods and CADPAC 4.0 and 

for propylene oxide (4) using semidirect methods and GAUSSIAN 92; the latter were also used for 

calculations on 5 and 6 at the VD/3P basis set level. SCF APTs were calculated for each molecule at all 

basis set levels using CADPAC 4.0 or 5.0. AATs were calculated about an origin O using the distributed 

origin (DO) gauge (Stephens 1987; Stephens et al. 1990) when 

kp)° = (l*ßf * ^ E «M <  ^ . O) 

where R^ is the equilibrium position of nucleus X, and (I,^) is the electronic AAT of nucleus X 

obtained with the coordinate origin at Rx. The 'local' AATs, (Ia«)\ were calculated at the SCF level 

using CADPAC 4.0 or 5.0 via the relation (Stephens et al. 1990) 

(^ = (£>° " 4^ E *py8 < !&(*> . (4) 

where (laß)0 is the electronic AAT obtained with the origin at 0 and E^fa) is the electronic APT 

calculated using the momentum representation (Stephens et al. 1990). SCF and 'semi-MP2' DO gauge 

AATs were then obtained by combining SCF local AATs and either SCF or MP2 APTs respectively using 

equation (3). Vibrational frequencies and normal coordinates were obtained from the appropriately mass- 

weighted Hessian. Rotational strengths were obtained from equation (1). Note that the use of the DO 



gauge in the calculation of AATs guarantees origin-independent rotational strengths (as long as the same 

APTs are used in equation (3) as in equation [lb]). Dipole strengths, defined by 

Di= |<0|iiel|l>i|
a , (5) 

were simultaneously calculated via equation (lb). Calculated frequencies, dipole strengths, and rotational 

strengths have been used to synthesize unpolarized absorption and VCD spectra using Lorentzian band 

shapes (Kawiecki et al. 1988). 

3. RESULTS AND DISCUSSION 

Experimental solution unpolarized absorption and VCD spectra of 1-4 (Kawiecki et al. 1991; 

Freedman et al. 1991a, 1991b; Freedman et al. unpublished) in C-H stretching, C-D stretching, and mid-IR 

spectral regions are reproduced in Figures 1-4. Mid-IR spectra have not yet been reported for 3. 

Frequencies, dipole strengths, and rotational strengths calculated using TZ/2P MP2 force fields and 

APTs and TZ/2P semi-MP2 AATs for 1-4 are given in Tables 1-4. Unpolarized absorption and VCD 

spectra derived thence are plotted in Figures 1-4. 

Comparison of calculated and experimental unpolarized absorption and VCD spectra leads to 

unambiguous assignments of the fundamental bands of 1, 2, and 4 in the mid-IR regions and of 1-3 in 

the C-H and C-D stretching regions. The frequencies, dipole strengths, and rotational strengths reported 

(Kawiecki et al. 1991; Freedman et al. 1991a, 1991b; Freedman et al. unpublished) for these bands are 

listed in Tables 1-4. Assignment of the C-H stretching spectra of 4 is less straightforward. Only one of 

the fundamentals can be confidently assigned; its experimental frequency, dipole strength, and rotational 

strength are given in Table 4. 

Analogous calculations have also been carried out for 1-3 using the VD/3P basis set The results are 

given in Tables 1-3 and plotted in Figures 1-3. All VD/3P results are qualitatively identical to those 

obtained at the T272P basis set level. They require no changes in the assignments of the spectra of 1-3. 
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Figure 1. Predicted and experimental unpolarized absorption and VCD spectra of 1. Upper and middle 
spectra are predicted using TZ/2P and VD/3P basis sets respectively: half widths and half 

=T height  of the  Lorentzian  bands   (y)   are   6.0 cm 1   (mid-IR  region)  and   10.0 cm 
(C-H/C-H stretching regions).    Lower spectra are the experimental spectra of Freedman 
et al. (1991a) in CS2 (mid-IR region) and C2a1 (C-H/C-D stretching regions) 
absorption at 1,034 and 1,117 cm"1 is attributed to impurities. VCD spectra are for 

. note that 
(2S.3S)-!. 

Upper and lower frequency scales apply to calculated and experimental spectra respectively. 
Left and right vertical scales apply to C-H/C-D stretching and mid-IR spectra respectively. 
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Figure 2. Predicted and experimental unpolarized absorption and VCD spectra of 2. Upper and middle 
spectra are predicted using TZ/2P and VD/3P basis sets respectively; v is 6.0 cm"1 and 
10.0 cm~ in the mid-IR and C-H/C-D stretching regions respectively. Lower spectra are the 
experimental spectra of Freedman et al. (unpublished) in CS2 (mid-IR region) and CUCl, 
(C-H/C-D stretching regions). VCD spectra are for (IS, 2S)-2. Upper and lower frequency 
scales apply to calculated and experimental spectra respectively. Left and right vertical scales 
apply to C-H/C-D stretching and mid-IR spectra respectively. 
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Figure 3. Predicted and experimental unpolarized absorption and VCD spectra of 3. Upper and middle 
spectra are predicted using T2/2P and VD/3P basis sets respectively; y = 10.0 cm-1. Lower 
spectra are the experimental spectra of Freedman et al. (1991b> in Q,Cl^ VCD spectra are for 
(2S. 3S)-3. Upper and lower frequency scales apply to calculated and experimental spectra 
respectively. 
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Figure 4. Predicted and experimental unpolarized absorption and VCD spectra of 4. Upper spectra are 
predicted using the TZ/2P basis sets: vis 6.0 and 10.0 cm"1 in the mid-IR and C-H stretching 
regions respectively. Lower spectra are the experimental spectra of Kawiecki et al. (1991) in 
CSo and CC1,,. VCD spectra are for (S~)-4. Upper and lower frequency scales apply to 
calculated and experimental spectra respectively. 
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Table 4. Frequencies, Dipole Strengths, and Rotational Strengths of Molecule 4a 

V D R 

calc. exp.b calc. exp.b calc. exp.b 

TZ/2P 

MP2 SCF MP2 SCF 
TZ/2P TZ/2P TZ/2P TZ/2P 

3259 3047 17.3 29.8 29.9 1.9 2.2 3.5 
3193 — 25.2 55.1 — -7.1 -8.0 — 

3175 — 15.9 30.7 — 16.9 29.0 — 
3174 — 4.8 12.3 — -10.0 -19.3 — 

3156 — 21.5 34.1 — -1.0 -1.4   

3087 — 14.6 26.5 — -0.4 -0.6 — 

1550 1500 10.0 12.0 15.1 -3.5 -4.5 -4.0 
1529 1456 19.9 15.4 16.0 1.8 1.4 — 
1514 1444 14.1 10.2 14.0 -1.2 -1.1 — 

1458 1406 51.4 46.1 52.5 -13.4 -13.2 -8.4 
1420 1369 11.8 14.3 14.7 -3.5 -4.4 -3.3 
1295 1262c 11.4 14.1 25.7° 7.6 7.5 15.6C 

1199 1165 2.3 4.0 4.2 -0.7 -1.8 -0.4 
1177 1143 13.0 20.5 13.1 8.5 9.6 21.4 
1165 1130 2.5 3.6 13.9 -5.9 -0.8 -15.9 
1130 1103 21.6 34.7 26.5 5.4 9.3 8.1 
1054 1022 31.5 36.6 56.1 -7.1 -8.3 -6.7 
977 951 41.9 66.1 65.9 28.1 35.5 71.9 
916 893 5.8 15.0 19.4 -17.1 -24.7 ^2.8 
852 829c 199.2 312.6 287.6C -3.1 -2.2 — 

771 748c 28.5 46.8 40.9° -11.7 -15.2 -21.6C 

407 414 42.7 52.3 3.8 4.5 
371 373 46.4 59.9 11.9 15.4 
219 200d 8.1 10.6 -3.5 -3.7 

Definitions and units as in Table 1. Rotational strengths are for the (S) enantiomer. 
From Kawiecki et al. (1991); in CQ, solution, except where indicated Rotational strengths were not 
normalized to 100% ee. 
CSj solution data. 
Gas-phase data. 

12 



Calculated TZ/2P vibrational frequencies are in excellent qualitative agreement with experiment for 

all assigned fundamentals of 1-4. Calculated frequencies are greater than experimental frequencies, with 

the exception of two low frequency modes of 4. The ranges/averages of the (absolute) differences are: 

1) 1.5%-6.8%/4.1%, 2) and 3) 3.1%-7.2%/5.0%, and 4) 0.5%-7.0%/3.6%. For the mid-IR modes alone 

the ranges/averages are: 1) 1.5%-3.4%/2.6%, 2) and 3) 3.1%-5.0%/3.9%, and 4) 0.5%-5.0%/3.2%. For 

the C-H and C-D stretching modes alone, the ranges/averages are: 1) 5.3%-6.8%/6.1%, 2) and 

3) 5.5%-7.2%/6.3%, and 4) 7.0%-7.0%. Calculated VD/3P MP2 frequencies for 1-3 are very close to 

the TZ/2PMP2 frequencies. The maximum/average differences are: 1) 1.2%/0.3%,2) and 3) 2.2%/0.7%. 

The differences between calculated and experimental frequencies are very litue altered. For 1-3, a very 

large (=50%) increase in the basis set size above the TZ/2P level thus yields insignificant improvement. 

The differences between experimental and calculation frequencies can be attributed to residual errors 

in the calculated harmonic frequencies and to the contributions of anharmonicity and solvent effects to the 

experimental frequencies. A comparison of calculated TZ/2P MP2 and experimentally derived harmonic 

frequencies for several small molecules found differences averaging 2.2% (Simandiras et al. 1988). Gas 

phase and solution frequencies reported for 1 (Freedman et al. 1991a) and 2 (Freedman et al. unpublished) 

differ on average by 0.4% and 0.6% respectively. We therefore conclude that anharmonicity is overall 

the dominant contributor to the differences in calculated and experimental frequencies for 1-4. This 

conclusion is consistent with known anharmonicity contributions to experimental frequencies for other 

small molecules (Hehre et al. 1986). 

Dipole strengths calculated at the TZ/2P basis set level are in excellent qualitative agreement with 

experimental dipole strengths for all assigned fundamentals of 1-4, demonstrating the substantial accuracy 

of both the harmonic normal coordinates and the ATPs. In 1-3, dipole strengths are very little changed 

on expansion of the basis set to the VD/3P level, indicating substantial basis set saturation in the TZ/2P 

APTs. 

Quantitative comparison of calculated and experimental dipole strengths is complicated by the absence 

of well-defined error bars on experimental dipole strengths, which were obtained by fitting of absorption 

spectra using analytical band shape functions. The dipole strengths of weak bands and of poorly resolved 

bands are particularly uncertain. Undoubtedly, a significant fraction of the difference between calculated 

and experimental dipole strengths is attributable to experimental error. On the other hand, errors in 

calculated dipole strengths arising from residual errors in normal coordinates and APTs and from the 
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absence of anharmonicity and condensed phase efforts can all be expected to contribute significantly. 

Comparison of the dipole strengths of the <!$- and d4-isotopomers of 1, calculated at the VD/3P MP2 level, 

to accurate gas phase experimental values demonstrated (Stephens et al. 1993) that 1) with the exception 

of C-H and C-D stretching modes, calculated dipole strengths agreed with experimental values within 

experimental error while, 2) in the case of C-H and C-D stretching modes, agreement was significantly 

worse. Errors arising from errors in the harmonic force field and APTs and from the absence of 

anharmonicity thus appear to be small except in hydrogenic stretching modes, where anharmonicity is 

more significant Given the small differences in dipole strengths of 1-3 at the TZ/2P and VD/3P levels, 

it can then be inferred that, for 1-4 at both TZ/2P and VD/3P levels: 1) in the mid-IR region the 

dominant contributions to the differences in calculated and experimental dipole strengths are condensed 

phase effects and experimental errors and 2) anharmonicity is also likely to contribute significantly in the 

C-H and C-D stretching regions. 

Rotational strengths calculated at the TZ/2P basis set level are in excellent qualitative agreement with 

experimental rotational strengths for all assigned fundamentals of 1-4. In particular, all signs are correctly 

predicted. The substantial accuracy of the MP2 force field and APTs is further confirmed. In addition, 

the substantial accuracy of the semi-MP2 AATs is demonstrated. In 1-3, rotational strengths are very little 

changed on expansion of the basis set to the VD/3P level, with the exception of the C-H and C-D 

stretching modes. For the mid-IR modes, basis set saturation appears to be comparable to that of the 

dipole strengths; for the C-H and C-D stretching modes it is somewhat less. The difference must be 

attributed to a lesser degree of basis set saturation of the AATs than of the APTs. This conclusion is 

confirmed by calculations of dipole and rotational strengths using VD/3P force fields and TZ/2P APTs 

and AATs (Tables 1-3). 

As are dipole strengths, experimental rotational strengths are obtained by fitting of VCD spectra using 

analytical band shape functions. However, the quantitative accuracy of experimental rotational strengths 

is substantially less well-defined than that of dipole strengths since experimental VCD spectra are less 

accurate than unpolarized absorption spectra (Nafie 1988; Keiderling 1990). Resolution is lower. Signal- 

to-noise ratio is much worse. Absolute calibration is less straightforward and reliable. Artifactual signals 

are difficult to eliminate. It is consequently very difficult to quantify the contributions of experimental 

error to the differences between calculated and experimental rotational strengths. 
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Theoretical errors are also hard to quantitate. Errors in the harmonic force field and APTs are 

undoubtedly insignificant relative to errors in the AATs. The predominant deficiency in the AATs is the 

incomplete inclusion of correlation as a result of the calculation of the local AATs at only the SCF level. 

In the case of the TZ/2P calculations, as discussed previously, some basis set error is also present An 

estimate of the overall sensitivity of rotational strengths to the inclusion of correlation in the AATs can 

be obtained by eliminating correlation contributions to the APTs. Rotational strengths obtained using SCF 

APTs and AATs are given in Tables 1-4. The (absolute) changes in rotational strengths for those bands 

of 1-4 for which experimental rotational strengths are available average 2.9 x 10-44 esu2 cm2 at the TZ/2P 

basis set level. The differences between rotational strengths calculated using TZ/2P MP2 APTs and semi- 

MP2 AATs and experimental rotational strengths average 6.4 x 10-44 esu2 cm2. It is therefore reasonable 

to conclude that a significant fraction of residual differences between calculated and experimental 

rotational strengths can be attributed to the incomplete inclusion of correlation in the calculation of AATs. 

Our calculations do not successfully reproduce the C-H stretching VCD of 4. This could be attributed 

to residual errors in our harmonic calculations or to anharmonicity (Fermi resonance). In view of the 

obvious complexity of the C-H stretching absorption spectrum, the latter is almost certainly the principal 

contributor. 

A number of calculations of rotational strengths for 1-4 have previously been reported (Lowe, 

Stephens, and Segal 1986; Jalkanen et al. 1988,1989,1990; Kawiecki et al. 1988,1991; Lowe and Alper 

1988; Fablioni 1993; Freedman et al. 1991b; Stephens, Jalkanen, and Kawiecki 1990; Dutler and Rauk 

1989; Rauk and Yang 1992; Yang and Rauk 1992; Polavarapu and Bose 1990,1991; Freedman and Nafie 

1988). These calculations have used a variety of harmonic force fields; ab initio SCF (Fablioni et 

al. 1993; Dutler and Rauk 1989; Rauk and Yang 1992; Yang and Rauk 1992; Polavarapu and Bose 1990, 

1991), empirically scaled ab initio SCF (scaled quantum mechanical [SQM]) (Lowe, Stephens, and Segal 

1986; Jalkanen et al. 1988,1989; Kawiecki et al. 1988,1991; Lowe and Alper 1988; Stephens, Jalkanen, 

and Kawiecki 1990; Freedman and Nafie 1988) and empirical general valence (Jalkanen et al. 1990; 

Stephens, Jalkanen, and Kawiecki 1990; Polavarapu and Bose 1991). These diverse force fields vary 

substantially in reliability and their deficiencies are reflected in rotational strengths calculated thence. The 

harmonic force fields utilized in the present calculations are substantially more reliable than any used 

previously and reduce to insignificance the error in rotational strengths originating from errors in harmonic 

force fields. 
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Previous calculations have also adopted a considerable diversity of approaches to the calculation of 

APTs and AATs. APTs have been calculated ab initio at the SCF level using both derivative methods 

(numerical [Lowe, Stephens, and Segal 1986; Lowe and Alper 1988] and analytical [Jalkanen et al. 1988, 

1990; Kawiecki et al. 1988, 1991; Stephens, Jalkanen, and Kawiecki 1990; Dutier and Rauk 1989; Rauk 

and Yang 1992; Yang and Rauk 1992; Polavarapu and Bose 1990, 1991]) and sum-over-states methods 

(Jalkanen et al. 1989; Fablioni et al. 1993). APTs have also been calculated less accurately via fixed 

partial charge (FPC) (Kawiecki et al. 1991; Stephens, Jalkanen, and Kawiecki 1990), and 'floating basis 

set vibronic coupling' approaches (Freedman and Nafie 1988). AATs have been calculated ab initio at 

the SCF level using both derivative methods (numerical [Lowe, Stephens, and Segal 1986; Lowe and 

Alper 1988] and analytical [Jalkanen et al. 1988,1990, Kawiecki et al. 1988,1991; Stephens, Jalkanen, 

and Kawiecki 1990]) and sum-over-states methods (Jalkanen et al. 1989; Fablioni et al. 1993), and using 

both common origin (Lowe, Stephens, and Segal 1986; Jalkanen et al. 1990; Kawiecki et al. 1991; Lowe 

and Alper 1988; Fablioni et al. 1993) and DO gauges (Jalkanen et al. 1988, 1989, 1990; Kawiecki et 

al. 1988, 1991; Stephens, Jalkanen, and Kawiecki 1990). In addition, AATs have been calculated less 

accurately via FPC (Kawiecki et al. 1991; Stephens, Jalkanen, and Kawiecki 1990), APT (Kawiecki et 

al. 1991; Stephens, Jalkanen, and Kawiecki 1990), 'floating basis set vibronic coupling' (Freedman and 

Nafie 1988), localized molecular orbital (LMO) (Polavarapu and Bose 1990; 1991), and sub-SCF sum- 

over-states approaches (Dutier and Rauk 1989; Rauk and Yang 1992; Yang and Rauk 1992). The MP2 

APTs and semi-MP2 DO gauge AATs used in the present calculations are substantially more accurate than 

any used previously and considerably reduce the errors in rotational strengths originating in errors in APTs 

and AATs. 

4.  CONCLUSION 

With the exception of the C-H stretching region of 4 which is strongly perturbed by Fermi resonance, 

VCD spectra of 1-4 calculated using large basis set MP2 force fields, together with MP2 APTs and semi- 

MP2 AATs, are in excellent agreement with experiment. Residual errors in frequencies are attributable 

predominantly to anharmonicity. Residual errors in VCD intensities (rotational strengths) are attributable 

predominantly to the incomplete inclusion of correlation in the AATs, to anharmonicity and to condensed 

phase effects. (In the case of calculations at the TZ/2P level, incomplete basis set saturation may also 

contribute significantly in the C-H and C-D stretching region.) Substantially more accurate calculations 

require: 1) more complete inclusion of correlation in the calculation of AATs, 2) the inclusion of 

anharmonicity, and 3) the inclusion of solvent effects. The formalism for the calculation of AATs at the 
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multiconfiguration self-consistent-field (MCSCF) level using either conventional or field-dependent 

(London/gauge invariant) atomic oibitals has recently been developed and implemented (Bak et al. 1993). 

MCSCF calculations of AATs for 1-4, should soon be available and will be of great interest Hopefully, 

calculation of AATs using other post-SCF methodologies will also become possible in the near future. 

The inclusion of anharmonicity in calculations of VCD spectra requires the extension of equations (lb) 

and (lc) beyond the harmonic level. While well-known for electric dipole transition moments, formalisms 

for magnetic dipole transition moments including anharmonicity have not yet been developed. Thus, while 

great progress has recently been made in including anharmonicity in ab initio predictions of vibrational 

frequencies and electric dipole intensities, analogous calculations of VCD spectra are not yet on the 

horizon. The study of solvent effects on vibrational frequencies and intensities has a long history. The 

extension of current, state-of-the-art methods (macroscopic and/or microscopic) to VCD intensities should 

be straightforward. 

Our calculations of the VCD spectra of 1-4 are substantially more accurate than previous work. For 

the first time, the harmonic force fields used yield frequencies whose deviations from experimental 

frequencies are due primarily to anharmonicity. The MP2 APTs are substantially more accurate than the 

APTs used in all earlier work. The combined use of MP2 APTs and large basis set SCF local AATs yield 

DO gauge AATs substantially more accurate than the AATs used in all earlier work. Comparison of the 

present calculations and others (past or future) which use specific approximations for force fields, APTs 

and/or AATs will greatly assist the objective analysis of the relative accuracies of these approximations. 

The evaluation of the accuracy of our predicted VCD spectra for 1-4 is substantially limited by the 

uncertainty of the experimental VCD intensities. This work makes clear the importance of further 

developments in VCD instrumentation: reliable rotational strengths of well-defined accuracy require 

substantial improvements in resolution, sensitivity, absolute accuracy, and artifact control. It is to be 

hoped that the greatly improved capabilities of theory illustrated here will encourage such improvements. 
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